The $$\overline \partial $$ -Neumann operator on Lipschitz q-pseudoconvex domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions

On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...

متن کامل

The Neumann Problem on Lipschitz Domains

Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...

متن کامل

The Order of Plurisubharmonicity on Pseudoconvex Domains with Lipschitz Boundaries

Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain with Lipschitz boundary. Diederich and Fornaess have shown that when the boundary of Ω is C2, there exists a constant 0 < η < 1 and a defining function ρ for Ω such that −(−ρ)η is a plurisubharmonic function on Ω. In this paper, we show that the result of Diederich and Fornaess still holds when the boundary is only Lipschitz.

متن کامل

Analyticity of Dirichlet-Neumann Operators on Hölder and Lipschitz Domains

In this paper we take up the question of analyticity properties of Dirichlet–Neumann operators with respect to boundary deformations. In two separate results, we show that if the deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions, then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both results ut...

متن کامل

The Dirichlet-to-Neumann operator on rough domains

Article history: Received 6 May 2010 Revised 13 March 2011 Available online 22 July 2011 MSC: 46E35 47A07

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2011

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-011-0021-2